en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张陈(1999—),男,安徽合肥人,在读硕士,研究方向为运动生物力学和人因工程学。

中图分类号:G804.6;G804.8

文献标识码:A

文章编号:1008-3596(2025)03-0078-11

参考文献 1
陈万,李换平,王海宁,等.膝关节伸肌最大等速向心和离心收缩运动前后神经肌肉疲劳的研究[J].天津体育学院学报,2017,32(4):338.
参考文献 2
付梦龙.基于表面肌电信号的实时在线肌肉疲劳估计方法研究[D].深圳:中国科学院大学(中国科学院深圳先进技术研究院),2020.
参考文献 3
陈小平.第32届夏季奥运会延期对运动训练的影响及其对策[J].中国体育科技,2020,56(7):6.
参考文献 4
GAO L D,YE J Y,BÁLINT K,et al.Biomechanical effects of exercise fatigue on the lower limbs of men during the forward lunge[J].Frontiers in physiology,2023,14:1182833.
参考文献 5
ZHANG J Y,CHEN M M,PENG Y,et al.Wearable biosensors for human fatigue diagnosis:a review[J].Bioengineering & translational medicine,2023,8(1):e10318.
参考文献 6
ZHANG Y H,GUO H Y,ZHOU Y J,et al.Recognising drivers’ mental fatigue based on EEG multi-dimensional feature selection and fusion[J].Biomedical signal processing and control,2023,79(Part 2):104237.
参考文献 7
LI G,WANG J,XU W X,et al.Self-regulation phenomenon emerged during prolonged fatigue driving:an EEG connectivity study[J].IEEE transactions on neural systems and rehabilitation engineering,2023,31:4895.
参考文献 8
徐琴芳,王延培.脑电测量在儿童发展性障碍诊断中的应用[J].心理科学进展,2017,25(12):2136.
参考文献 9
LU X J,ZHANG J Q,HUANG S F,et al.Detection and classification of epileptic EEG signals by the methods of nonlinear dynamics[J].Chaos solitons & fractals,2021,151:111032.
参考文献 10
PARBAT D,CHAKRABORTY M.A novel methodology to study the cognitive load induced EEG complexity changes:chaos,fractal and entropy based approach[J].Biomedical signal processing and control,2021,64:102277.
参考文献 11
牛斯然,李建英,王霆.基于非线性参数分析的优秀气步枪运动员不同状态下大脑顶枕区脑电变化特征研究[J].西安体育学院学报,2020,37(2):225.
参考文献 12
王霆,李建英,时卫东.中国射箭队备战第17届仁川亚运会不同训练阶段脑电非线性参数分析及脑波诱导干预的研究[J].天津体育学院学报,2015,30(1):47.
参考文献 13
LIN L D,CHANG D,SONG D H,et al.Lower resting brain entropy is associated with stronger task activation and deactivation[J].NeuroImage,2022,249:118875.
参考文献 14
PAPPALETTERA C,MIRAGLIA F,COTELLI M,et al.Analysis of complexity in the EEG activity of Parkinson’s disease patients by means of approximate entropy[J].GeroScience,2022,44(3):1599.
参考文献 15
NEZAFATI M,TEMMAR H,KEILHOLZ S D.Functional MRI signal complexity analysis using sample entropy[J].Frontiers in neuroscience,2020,14:700.
参考文献 16
LYNN C W,CORNBLATH E J,PAPADOPOULOS L,et al.Broken detailed balance and entropy production in the human brain[J].Proceedings of the national academy of sciences of the United States of America,2021,118(47):e2109889118.
参考文献 17
张朋,周前祥,于洪强,等.基于EEG信号特征的脑力疲劳快速检测方法[J].北京航空航天大学学报,2023,49(1):145.
参考文献 18
徐选华,肖婷,陈晓红.社会网络环境下基于群智知识融合的大群体应急决策共识模型[J].中国管理科学,2024,32(2):285.
参考文献 19
HRAMOV A E,FROLOV N S,MAKSIMENKO V A,et al.Functional networks of the brain:from connectivity restoration to dynamic integration[J].Physics-Uspekhi,2021,64(6):584.
参考文献 20
HE B,YANG L,WILKE C,et al.Electrophysiological imaging of brain activity and connectivity-challenges and opportunities[J].IEEE transactions on bio-medical engineering,2011,58(7):1918.
参考文献 21
WANG Z M,CHEN Z Y,ZHANG J.EEG emotion recognition based on PLV-rich-club dynamic brain function network[J].Applied intelligence,2023,53(14):17327.
参考文献 22
MA J Y,WANG Z Y,CHENG T Y,et al.A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug-resistant epilepsy[J].CNS neuroscience & therapeutics,2022,28(11):1838.
参考文献 23
李洁.基于脑电图研究经颅交流电刺激影响卒中后认知障碍的注意功能[D].广州:南方医科大学,2021.
参考文献 24
VINCK M,OOSTENVELD R,van WINGERDEN M,et al.An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction,noise and sample-size bias[J].NeuroImage,2011,55(4):1548.
参考文献 25
CHANG W W,WANG H,YAN G H,et al.An EEG based familiar and unfamiliar person identification and classification system using feature extraction and directed functional brain network[J].Expert systems with applications,2020,158:113448.
参考文献 26
袁月婷,闫光辉,常文文,等.基于脑电信号空域特征的紧急制动行为识别[J].电子科技大学学报,2024,53(1):84.
参考文献 27
RUBINOV M,SPORNS O.Complex network measures of brain connectivity:uses and interpretations[J].NeuroImage,2010,52(3):1059.
参考文献 28
吴天昊,张震,王家曜.一种基于卷积神经网络的疲劳驾驶检测方法[J/OL].控制工程:1-7[2024-09-23].https://doi.org/10.14107/j.cnki.kzgc.20230854.
参考文献 29
滕晶,王玉来,姚斌,等.肝气郁结证患者脑电非线性分析的研究[J].山东中医药大学学报,2008,32(5):378.
参考文献 30
FELL J,RÖSCHKE J,MANN K,et al.Discrimination of sleep stages:a comparison between spectral and nonlinear EEG measures[J].Electroencephalography and clinical neurophysiology,1996,98(5):401.
参考文献 31
MAI J B,WANG X Z,LI Z B,et al.EEG signal classification of tinnitus based on SVM and sample entropy[J].Computer methods in biomechanics and biomedical engineering,2023,26(5):580.
参考文献 32
MU Z D,HU J F,MIN J L.Driver fatigue detection system using electroencephalography signals based on combined entropy features[J].Applied sciences,2017,7(2):150.
参考文献 33
SHALASH W M.Driver fatigue detection with single EEG channel using transfer learning[C]//2019 IEEE International Conference on Imaging Systems and Techniques(IST).Piscataway,NJ:IEEE Press,2019:1.
参考文献 34
韩明秀,王盛,王煜文,等.基于EEG的飞行员脑力疲劳评估研究进展[J].载人航天,2021,27(5):639.
参考文献 35
ZHANG T,CHEN J C,HE E Q,et al.Sample-entropy-based method for real driving fatigue detection with multichannel electroencephalogram[J].Applied sciences,2021,11(21):10279.
参考文献 36
CHEN L L,ZHAO Y,ZHANG J,et al.Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning[J].Expert systems with applications,2015,42(21):7344.
参考文献 37
KAR S,BHAGAT M,ROUTRAY A.EEG signal analysis for the assessment and quantification of driver’s fatigue[J].Transportation research part f:traffic psychology and behaviour,2010,13(5):297.
参考文献 38
ZHANG H,WANG J Y,GENG X Y,et al.Objective assessments of mental fatigue during a continuous long-term stress condition[J].Frontiers in human neuroscience,2021,15:733426.
参考文献 39
GRIGGS M A,PARR B,VANDEGRIFT N S,et al.The effect of acute exercise on attentional control and theta power in young adults[J].Experimental brain research,2023,241(10):2509.
参考文献 40
LI G,HUANG S,XU W X,et al.The impact of mental fatigue on brain activity:a comparative study both in resting state and task state using EEG[J].BMC neuroscience,2020,21:20.
参考文献 41
SHARMA L D,SARASWAT R K,SUNKARIA R K.Cognitive performance detection using entropy-based features and lead-specific approach[J].Signal,image and video processing,2021,15(8):1821.
参考文献 42
高思雨,梁轶睿,伦梓文,等.乒乓球运动员动作预测时空整合的大脑网络连接特征[J].首都体育学院学报,2023,35(5):483.
参考文献 43
GAO L Y,ZHU L,HU L,et al.Mid-task physical exercise keeps Your mind vigilant:evidences from behavioral performance and EEG functional connectivity[J].IEEE transactions on neural systems and rehabilitation engineering,2021,29:31.
参考文献 44
TRAN Y,CRAIG A,CRAIG R,et al.The influence of mental fatigue on brain activity:evidence from a systematic review with meta-analyses[J].Psychophysiology,2020,57(5):e13554.
参考文献 45
MONTEIRO T G,SKOURUP C,ZHANG H X.Using EEG for mental fatigue assessment:a comprehensive look into the current state of the art[J].IEEE transactions on human-machine systems,2019,49(6):599.
参考文献 46
XING X J,ZHONG B T,LUO H B,et al.Effects of physical fatigue on the induction of mental fatigue of construction workers:a pilot study based on a neurophysiological approach[J].Automation in construction,2020,120:103381.
参考文献 47
SAKKALIS V,DORU GIURCANEANU C,XANTHOPOULOS P,et al.Assessment of linear and nonlinear synchronization measures for analyzing EEG in a mild epileptic paradigm[J].IEEE transactions on information technology in biomedicine,2009,13(4):433.
参考文献 48
WU Y Z,LI W B,ZHANG J,et al.Driver’s hand-foot coordination and global-regional brain functional connectivity under fatigue:via graph theory and explainable artificial intelligence[J].IEEE transactions on intelligent vehicles,2024,9(2):3493.
参考文献 49
PORTAS C M,REES G,HOWSEMAN A M,et al.A specific role for the thalamus in mediating the interaction of attention and arousal in humans[J].Journal of neuroscience,1998,18(21):8979.
参考文献 50
DRUMMOND S P A,BROWN G G.The effects of total sleep deprivation on cerebral responses to cognitive performance[J].Neuropsychopharmacology,2001,25(Sup1):S68.
参考文献 51
DRUMMOND S P,GILLIN J C,BROWN G G.Increased cerebral response during a divided attention task following sleep deprivation[J].Journal of sleep research,2001,10(2):85.
参考文献 52
欧颖晖,吴寒,雷哲,等.99mTc-ECD SPECT脑显像NeuroGamTM诊断早期认知障碍[J].复旦学报(医学版),2022,49(5):753.
参考文献 53
FONTES E B,OKANO A H,de GUIO F,et al.Brain activity and perceived exertion during cycling exercise:an fMRI study[J].British journal of sports medicine,2015,49(8):556.
参考文献 54
DIMITRAKOPOULOS G N,KAKKOS I,DAI Z X,et al.Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks[J].IEEE transactions on neural systems and rehabilitation engineering,2018,26(4):740.
参考文献 55
ZHENG R L,WANG Z M,HE Y,et al.EEG-based brain functional connectivity representation using amplitude locking value for fatigue-driving recognition[J].Cognitive neurodynamics,2022,16(2):325.
参考文献 56
DO T T N,WANG Y K,LIN C T.Increase in brain effective connectivity in multitasking but not in a high-fatigue state[J].IEEE transactions on cognitive and developmental systems,2021,13(3):566.
目录contents

    摘要

    目的:探究脑电非线性动力学和多频段功能连接网络特征随运动性疲劳累积的变化。方法:11名受试者采用50%1RM进行重复下肢蹬伸至力竭的肌肉耐力测试,同步采集用于疲劳阶段划分的Borg CR-10量表和脑电信号。按照不同疲劳阶段对脑电进行处理。①提取香农熵、对数能量熵、Renyi熵、Tsallis熵、θ波绝对能量、α波绝对能量、β波绝对能量和(θ+α)/β指标;②在θ(4~8 Hz)、α(8~12 Hz)和β(12~30 Hz)频段,两两导联计算获得PLVWPLI值,通过阈值构建脑功能连接网络,进一步利用平均度、网络效率、特征向量中心性和聚类系数进行拓扑结构分析;③对比上述指标在不同疲劳阶段的差异。结果:香农熵在Fp1和Fp2的轻度与重度疲劳间存在统计学差异(p<0.05);对数能量熵除了在C3和P3导联外,均在不同疲劳程度之间表现出统计学差异(p<0.05);θ波绝对能量、β波绝对能量和(θ+α)/β分别在不同导联的不同疲劳程度之间表现出统计学差异(p<0.05);β频段的脑功能网络连接逐渐增强;由WPLI值构建的脑功能连接网络在α和β频段的复杂网络指标在不同疲劳程度表现出统计学差异和显著相关(p<0.05)。结论:单一频段的绝对能量仅在重度疲劳发生显著变化,而非线性动力学指标和复杂网络指标则随疲劳加深表现出阶梯式变化,体现了后者对于疲劳变化监测的敏感性,可作为疲劳评估与预警的有效生物指标。

    Abstract

    Objectives: This study aims to explore the changes of EEG nonlinear dynamics and multi-band functional connectivity network features with the accumulation of exercise-induced fatigue. Methods: Eleven participants underwent lower limb muscle endurance tests to exhaustion, utilizing 50% of their one repetition maximum (1RM). Simultaneous recordings of Borg CR-10 scale ratings and electroencephalographic (EEG) signals were collected for fatigue stage segmentation. EEG was processed according to different fatigue stages. ①Shannon entropy, logarithmic energy entropy, Renyi entropy, Tsallis entropy, θ wave absolute power, alpha wave absolute power, beta wave absolute power, and the (θ + α) / β index were extracted; ②in the θ (4~8 Hz), α (8~12 Hz), and β (12-30 Hz) frequency bands, the Phase Locking Value (PLV) and Weighted Phase Lag Index (WPLI) values were calculated by two-lead calculation, and the brain functional connection network was constructed by threshold, followed by topological structure analysis incorporating mean degree, network efficiency, eigenvector centrality and clustering coefficient; ③this paper made a comparison of the aforementioned metrics across different fatigue stages. Results: Statistically significant differences in Shannon entropy were observed between mild and severe fatigue in channels Fp1 and Fp2 (p<0.05). Logarithmic energy, except for channels C3 and P3, exhibited statistically significant differences across various fatigue levels (p<0.05). θ wave absolute power, α wave absolute power, and (θ + α) / β demonstrated statistically significant differences across different fatigue levels in distinct channels (p<0.05). The strength of brain functional network connections in the β frequency band increased gradually. Brain functional connectivity networks constructed from WPLI values showed statistically significant differences and significant correlations across different fatigue levels in the α and β frequency bands (p<0.05). Conclusion: While absolute power in a single frequency band significantly changed only during severe fatigue, nonlinear dynamics and complex network metrics displayed stepwise alterations with increasing fatigue, highlighting their sensitivity for monitoring fatigue changes and their potential as effective biomarkers for fatigue assessment and early warning.

  • 0 引言

  • 肌肉疲劳是运动科学领域研究的热点问题[1]。从生理学或生物力学的角度来看,肌肉疲劳是肌肉运动系统做功能力或收缩能力的暂时下降导致机体不能维持预期强度动作的内在原因[2]。多项研究同样表明肌肉疲劳常常是导致运动损伤的重要原因[3-4]。因此,如果能够实现疲劳阶段性变化的准确监测,对于运动员在训练或比赛过程的运动损伤预防和早期疲劳预警将具有重要的积极意义。

  • 随着智能可穿戴设备的发展,无创生物信号采集逐渐普及,例如表面肌电、心率、脉搏、呼吸和脑电等[5]。这些信号提供了人体生理活动的信息,并且多项研究显示这些信号随着疲劳的出现发生显著变化;其中,脑电技术由于其具有时间分辨率高、可靠性高、成本低和设备便携等特点,常被用于评估精神和身体的疲劳[6-7]。针对疲劳常用的脑电分析方法多为θ、α和β三个主要频段的频谱分析[8]。由于脑电信号的非线性和混沌性特点,运用非线性动力学相关理论(特别是熵)提取脑电特征已经得到广泛应用并取得了不错效果。具体而言,熵可用于量化与改变状态相关的大脑功能和大脑区域的改变[13]。在过去的几十年,已经引入了多种熵(样本熵、近似熵、Tsallis熵、排列熵、多尺度熵等)来探究大脑活动,但这些熵少见用于疲劳状态,因此疲劳状态下的非线性动力学指标如何变化仍是一个相对未知的问题,对其进行深入探究对临床、康复和运动科学均具有重要意义。此外,基于图论的复杂脑网络是一门多学科融合的新兴研究方法[18],其以构建脑功能连接网络及提取网络拓扑属性的方式可以将原本离散的脑电极信息整合起来[19],弥补脑电信号空间分辨率不足的同时还可以研究不同大脑区域之间的相互作用[20],进而揭示不同状态下的脑功能作用机制[21]

  • 纵观现有研究,多仅关注运动员在疲劳前后的脑电变化,围绕运动员运动性疲劳发生发展过程中的脑电机制变化的研究较少。因此,本研究首先通过Borg CR-10量表划分了3种疲劳阶段,其次探究不同疲劳阶段下的香农熵、Renyi熵、对数能量熵、Tsallis熵、θ波绝对能量、α波绝对能量、β波绝对能量、(θ+α)/β相对能量的变化,进一步基于PLV和WPLI构建θ、α和β频段的功能连接脑网络,并提取平均度、特征向量中心性、网络密度和聚类系数4种网络拓扑指标,解释疲劳发展过程的脑网络活动状况,以期作为疲劳监控和损伤预防的有力工具。

  • 1 方法

  • 1.1 实验对象

  • 11名均为右利腿的国家一级运动员全程参与本项实验,其中男性5名、女性6名,年龄21.82±2.26岁,身高175.73±9.53 cm,体重65.00±6.96 kg。所有受试者最近1年内无下肢和神经系统疾病或损伤。每个受试者都被告知实验风险和流程并签署知情同意书。该研究设计已获得国家体育总局运动医学研究所伦理委员会的批准(批准号:202110),遵循《赫尔辛基宣言》的各项伦理原则。

  • 1.2 实验方案

  • 图1 下肢蹬伸实验示意图和脑功能连接网络构建流程图

  • 所有受试者热身后坐在水平下肢蹬伸训练器上进行右腿最大力量(one-repetition maximum,1RM)测试。规定动作要求如图1所示:髋部接近完全屈曲,右腿膝关节初始屈曲角度约为100°,右脚置于受力踏板中部并水平推动,直至膝关节屈曲角度约为170°。1RM测试完成后,受试者休息大约3 min后再以50% 1RM进行重复下肢蹬伸运动的肌肉耐力测试。当受试者无法按照规定的频率完成动作或者腿部屈伸姿势严重变形时终止下肢蹬伸运动。

  • 1.3 数据采集

  • 1.3.1 Borg CR-10量表

  • 测量人员提前对受试者进行Borg CR-10量表的使用培训。在50%1RM下肢蹬伸过程中,受试者每达到Borg CR-10量表中的分值就进行汇报,测量人员记录下所有分值发生的时间(初始时刻为0分时刻,结束时刻为10分时刻)。将Borg分值为0~4分的时间段划分为轻度疲劳,4~8分的时间段划分为中度疲劳,8~10分的时间段划分为重度疲劳。

  • 1.3.2 脑电信号

  • 采用采样频率为500 Hz的26通道SMARTING无线便携式脑电采集系统。所有受试者都被要求在测量前洗头,以避免汗液或油脂的影响。之后热身并佩戴脑电帽,并注射导电膏到每个脑电电极中,可以通过配套软件SMARTING Streamer的脑电电阻监测图确定脑电导联与头皮的电阻值,确保电阻值小于5千欧。中心点和额部中点之间连接的中点是参考电极,额极的中点是接地电极,M1和M2用作后续分析的参考电极,实际分析共22个导联(Fp1、Fp2、AFz、F7、F3、Fz、F4、F8、C3、C4、Cz、CPz、T7、T8、P3、P4、P7、P8、Pz、POz、O1、O2)。

  • 1.4 脑电预处理

  • 脑电信号的预处理采用Matlab和EEGlab进行。数据合并定位电极点后重设参考,以M1和M2的平均值进行重新再参考。之后在0.5~30 Hz之间进行带通滤波以及49~51 Hz带阻滤波。接着采用独立成分分析(independent component analysis,ICA)保留有效成分并去除固有伪影的噪声成分。以Borg分值发生时间为依据进行信号阶段划分。

  • 1.5 脑电特征提取

  • 在每个导联的脑电信号中分别计算不同疲劳阶段对应的香农熵、Renyi熵、对数能量熵、Tsallis熵、θ波绝对能量、α波绝对能量、β波绝对能量、(θ+α)/β相对能量8个脑电特征[17]

  • 1.6 功能性脑网络构建

  • 基本流程见图1。相位锁值(phase locking value,PLV)是基于相位的功能连接方法,实际测量的是两个通道信号之间平均相位差的绝对值,其值介于0~1之间,越接近1表示两个信号相位越同步。PLV虽然被广泛使用,但其对体积传导效应敏感,而加权相位滞后指数(weighted phase lag index,WPLI)相位滞后,则可避免该问题。因此,本研究采用PLV和WPLI两种方式分析不同通道之间的功能连接,以达到优缺点互补。

  • 1.6.1 PLV算法

  • 首先,采用希尔伯特变换计算信号的瞬时相位。对于t时刻的信号xt)进行希尔伯特变换x^t,如式1所示:

  • x^(t)=H[x(t)]=x(t)×1πt=1π- x(τ)t-τdτ
    (1)
  • 接着计算瞬时相位φx,计算公式如下:

  • φx(t)=arctanx^(t)x(t)
    (2)
  • 由此可以确定两个信号之间的相位差为:

  • φxy(t)=φx(t)-φy(t)
    (3)
  • PLV的计算公式如下:

  • PLV(f)xy=n-1t=1n ejφxy(t,f)
    (4)
  • 其中,φxytf)表示频率f处的相位差,计算n个序列的平均相位差。

  • 1.6.2 WPLI算法

  • WPLI是相位延迟指数(phase-lag index,PLI)的延伸,PLI的计算公式如下:

  • PLIxy=1Nt=1N signφx(t)-φy(t)
    (5)
  • 其中,sign是符号函数,如果相位差为正,则值表示1;如果相位差为负,则值为-1;相位差为0,则其值表示为0。PLI的值在0~1之间,0表示无同步,1表示完美同步。

  • WPLI将每个PLI的虚部进行绝对值加权,两个信号之间的WPLI的计算方式如下:

  • WPLI=1Nk=1N ImSksignφl(k)-φm(k)1Nk=1N ImSk
    (6)
  • 其中,ImS)是S的虚部。

  • 1.6.3 网络构建

  • 将脑电信号划分为3个频段θ段(4~8 Hz)、α段(8~12 Hz)和β段(12~30 Hz),针对于不同疲劳阶段在不同频段下计算两两导联之间的 PLV值和WPLI值,得到22×22的PLV和WPLI矩阵。由于噪声或其他非特征性信号间的相互作用,矩阵内存在大量弱连接边,大量处于中间的连接边权值不能很好地区分和表征不同疲劳程度之间脑区间的依赖关系。因此,需要设定一个合适的阈值来对上述超邻接矩阵进行筛选,保留具有一定区分度的较高连接边权值。方法如下:将3种频段对应的PLV和WPLI矩阵中的连接权值放在一起组成一个权值向量,然后找到该向量取值分布中的上分位点作为阈值。如图2所示,本文得到WPLI在θ、α和β下的阈值为0.403 6、0.338 5和0.192 4,PLV在θ、α和β下的阈值为0.551 0、0.587 4和0.679 5。接着将大于阈值的连接边权值保留,小于阈值的及自连接设置为0,进而构建功能连接网络。

  • 图2 WPLIPLV分别在3种频段下所取的阈值

  • 1.7 功能性脑网络分析

  • 采用开放工具包大脑连通性工具箱(brain connectivity toolbox,BCT)计算功能性脑网络的平均度、特征向量中心性、网络密度和聚类系数4种网络拓扑指标[27],进而分析脑功能连接网络特性。

  • 1.8 统计分析

  • 全文所有数据均保留2位小数,使用平均值±标准差表示。使用SPSS 27.0进行统计处理,采用夏皮罗-威尔克法计算数据的正态性,组间差异采用单因素方差与LSD多重比较或Kruskal-Wallis秩和检验。采用Pearson相关系数衡量网络指标和疲劳程度之间的相关性。p<0.05表示差异有显著性意义,p<0.01表示差异有非常显著性意义。

  • 2 结果

  • 2.1 脑电特征变化

  • 图3为不同电极的香农熵、对数能量熵、θ波绝对能量、β波绝对能量和(θ+α)/β在不同疲劳程度下表现出的差异。Fp1和Fp2的香农熵在轻度疲劳与重度疲劳之间表现出显著差异(p<0.05)。对数能量熵除了在C3和P3外,均在不同疲劳程度之间表现出不同程度的显著差异。F7的θ波绝对能量在轻度与重度疲劳之间表现出显著差异(p<0.05),T7的θ波绝对能量在轻度与重度疲劳、中度与重度疲劳间均有显著差异(p<0.05)。对于β波绝对能量,Fp1仅在中度与重度疲劳之间表现出显著差异(p<0.05),O2、T7和T8则在轻度与重度疲劳、中度与重度疲劳间均有显著差异(p<0.05)。对于(θ+α)/β,F4和F8在轻度与重度疲劳间表现出显著差异(p<0.05)。此外,不同电极的Renyi熵、Tsallis熵和α波绝对能量在不同疲劳程度下未表现出显著差异。

  • 图3 脑电各导联在不同疲劳程度下的变化

  • 2.2 脑功能连接网络

  • 图4为3个频段下对应的不同疲劳程度的PLV和WPLI脑功能网络拓扑连接图。相比于WPLI,PLV连接结果显示出较强的对称性。由 PLV结果可知,θ频段的中央区和顶叶区的交互作用减弱,α频段的额叶区内交互作用增强,β频段的前额叶和额叶区交互作用增强。由WPLI结果可知,θ频段下的重度疲劳主要是额叶、颞叶和顶叶的交互作用,α频段则始终保持前额叶和额叶的连通,β频段则随疲劳程度增加在大脑各区域交互作用逐渐增强。

  • 图4 分别由PLV和WPLI在3个频段下构建的脑功能连接网络

  • 2.3 复杂网络属性

  • 图5为由阈值化PLV和WPLI矩阵网络特征参数的差异。不同网络参数在不同疲劳程度下的阈值化PLV矩阵中未显示出显著差异。对于阈值化WPLI矩阵:θ频段的复杂网络属性未观察到显著差异;在α频段中的平均度、网络效率和特征向量中心性在轻度和重度疲劳间表现出非常显著差异(p<0.01),聚类系数在轻度和重度疲劳间表现出显著差异(p<0.05),网络效率和特征向量中心性还在轻度与中度疲劳间表现出显著差异(p<0.05);在β频段中的平均度和网络效率在轻度和重度疲劳间表现出显著差异(p<0.05),特征向量中心性在轻度和重度疲劳间表现出非常显著差异(p<0.01),特征向量中心性还在轻度和中度疲劳间表现出显著差异(p<0.05)。

  • 图5 3个频段下复杂网络指标随疲劳程度的变化

  • 2.4 复杂网络属性与疲劳程度的相关性

  • 图6为由WPLI处理后α和β频段的4种网络指标与疲劳程度的Pearson相关性。不同频段的所有网络指标疲劳程度均显著正相关。对于同一网络指标,处于α频段的相关性要优于β频段。

  • 图6 WPLI下α和β频段的4种网络指标与疲劳程度的Pearson相关

  • 3 讨论

  • 以往研究关注驾驶、建筑、办公等疲劳任务,上述任务在疲劳后表现为分心、注意力下降、反应时间延长等生理本能[28]。与之不同,肌肉耐力测试中疲劳要求的是强制性克服生理极限的维持极佳运动表现,最终到达疲劳的崩溃点,身体和精神均达到耗竭的状态。在本研究中,单一频段的绝对能量仅在重度疲劳发生显著变化,而非线性动力学指标和复杂网络指标则随疲劳加深体现出了阶梯式的变化,这体现了后者对于疲劳变化监测的敏感性。此外,复杂网络指标与疲劳程度显著正相关,进一步说明其能够作为良好的疲劳标志物。

  • 通常认为脑电的非线性动力学指标变化不仅相比于传统指标更为突出和灵敏,还可以提供有关生理或者心理的动力学补充信息。脑电中的熵值一般代表局部神经元的复杂性,低熵代表复杂频段中的有序状态(能量分布垂直化),高熵则是复杂频段的无序状态(能量分布扁平化)[31]。本研究的对数能量熵在多个导联中随疲劳增加显著增大,展现出了较强的敏感性。香农熵则在前额叶的Fp1和Fp2展现出显著减小。研究表明,从Fp1和Fp2提取的特征可能产生更好的性能,尤其是Fp1,常被用作监测疲劳状态的有效通道。以往的研究多反馈为熵减的变化,但现有研究表明并非所有的熵指标会随着疲劳增加产生一致的减小趋势[35],尤其是对数能量熵[36],这被解释为为了维持任务驱动,与分解代谢相关的能量产生适应性变化,导致小波对数能量熵开始增加[36]。还有研究认为,这是由于疲劳开始后,频谱能量从低频段转移到高频α和β频段,导致能量谱变平,能量分布的扁平化意味着更大的无序,导致后期阶段的熵值更高[37]。Renyi熵和Tsallis熵则未表现出显著差异,虽然Renyi熵和Tsallis熵是香农熵的扩展,但多在分析长程特征方面具有优势[38]

  • 身体活动与大脑皮层活动之间存在相互关系,例如急性运动会导致不同频段功率的暂时增加[39]。θ频段被认为反映了嗜睡的早期状态,这与脑疲劳有关[40]。额叶包含大脑皮层中的大部分多巴胺神经元[41],其θ波激活水平被认为随着受试的认知控制或精神疲劳而增加,本研究中F7的θ波在重度疲劳的显著增加表明受试者的认知控制表现到达了极限。T7的θ波增加则可归因于身体疲劳。近年的荟萃分析结果显示,θ波功率的增加是精神疲劳存在的可靠标志物[44]。因此,可以认为在本研究中,当机体到达重度疲劳时,已经经过从外周疲劳过渡到中枢疲劳、从身体疲劳过渡到精神疲劳两个阶段。不同导联的α频段能量在不同疲劳下未发现显著差异,这可能是由于α波的功率对疲劳相对不敏感,其功率的微小变化会被个体差异和功率谱波动掩盖[40]。β频段是反映大脑疲劳状态的主要脑电波,目前它在疲劳过程的变化仍不清晰[45]。主观疲劳水平的增加可以代表精神疲劳的发生。随着工作量的增加,β频段能量同样增加。由此推断,运动控制过程伴随大脑的不断动员,从而能够在疲劳过程中承担更多的工作量。同样,精神疲劳引起颞叶的(θ+α)/β显著增加,这是一种在高度身体疲劳下诱发的精神状态[46]。此外,对于不同疲劳程度,只有(θ+α)/β表现出了随疲劳程度增加而逐步增加的趋势。

  • 大脑活动的对称性和相似性是大脑功能的重要特征[47],相位同步实际就是神经元之间的同步活动,PLV在避免使用信号幅值的情况下,局限地使用相位信息测定了特定频段下的同步性。因此,本研究中由PLV构建的脑功能连接网络表现出对称性。本研究发现,PLV网络θ频段的顶叶P3的脑连接能力随着疲劳加深明显减弱,这与以往的研究一致[48],表明疲劳状态下大脑的控制能力下降。对于α和β频段,额叶和前额叶之间的相互连接明显增强。类似的研究中,大脑执行认知任务过程中可能通过增强连接来维持任务绩效,需要额外的补偿资源,使机体运动疲劳时间变长和力量输出更稳定。由于WPLI考虑了幅值,导致与PLV所构建的脑功能连接网络图在θ和β频段具有较大差异。重度疲劳下的θ和β频段在全脑的连接增强,这可能是由于疲劳引发了大脑功能网络区域间和区域内的重组,反映了抗疲劳特性[48]。WPLI网络在3种疲劳程度α频段的脑功能连接网络图仅在AFz-Fp2和Fz-Fp2存在连接,这可能由于采用上四分位法在α频段所选取的阈值较大。此外,右脑区域的连接较弱,这是由于本研究选取的都是右利腿受试者,对于左脑的激活具有优势[52]

  • 本研究中仅由WPLI构建的脑功能连接网络的α和β频段提取到的复杂网络指标在不同疲劳程度发生显著性差异。虽然θ频段的复杂网络指标在不同疲劳程度未发生显著差异,但存在与α和β频段相同的变化趋势,这可能是由于θ频段对疲劳的敏感导致同等条件下选择的上四分位点阈值略小,以致监测不到显著差异。疲劳后,大脑区域之间的平均度显著增加,反映为疲劳后的连通增加。FMRI视角下,主观疲劳程度更大的情况下大脑被激活的区域更多[53]。一般而言,聚类系数与疲劳程度呈正相关[54]。聚类系数的增加可以解释为相邻节点之间的连接强度增加,本地信息处理速率提高,神经连接的布线成本降低。因此,局部神经元群体的相互作用增强,以抵抗疲劳时的效率下降。特征向量中心性能够用于评估复杂网络最短路径的拓扑结构特征,其增加代表网络节点的重要性增加,进而提高大脑区域之间处理和传输信息的能力,进而解释了网络效率的提高,以维持高任务负荷[56]。复杂网络指标与疲劳强度之间的显著正相关关系进一步揭示了指标与任务强度相伴随。因此,这些指标可以作为疲劳评估与预警的有效生物指标。

  • 本研究还存在一定的局限性,如没有探究静息、恢复状态下和不同频段下的非线性动力学和功能连接的变化,且样本量较少,这将在后续的研究中得到补充。

  • 4 结果

  • 综上所述,相比于传统的单频段绝对能量,非线性动力学指标对疲劳更为敏感;相比于PLV,由WPLI构建的脑功能连接网络提取的复杂网络指标对疲劳程度更为敏感;疲劳后的脑功能网络的重组表现为连接增强,反映了抗疲劳特性,这为疲劳过程的脑机制研究提供了新的视角。

  • 参考文献

    • [1] 陈万,李换平,王海宁,等.膝关节伸肌最大等速向心和离心收缩运动前后神经肌肉疲劳的研究[J].天津体育学院学报,2017,32(4):338.

    • [2] 付梦龙.基于表面肌电信号的实时在线肌肉疲劳估计方法研究[D].深圳:中国科学院大学(中国科学院深圳先进技术研究院),2020.

    • [3] 陈小平.第32届夏季奥运会延期对运动训练的影响及其对策[J].中国体育科技,2020,56(7):6.

    • [4] GAO L D,YE J Y,BÁLINT K,et al.Biomechanical effects of exercise fatigue on the lower limbs of men during the forward lunge[J].Frontiers in physiology,2023,14:1182833.

    • [5] ZHANG J Y,CHEN M M,PENG Y,et al.Wearable biosensors for human fatigue diagnosis:a review[J].Bioengineering & translational medicine,2023,8(1):e10318.

    • [6] ZHANG Y H,GUO H Y,ZHOU Y J,et al.Recognising drivers’ mental fatigue based on EEG multi-dimensional feature selection and fusion[J].Biomedical signal processing and control,2023,79(Part 2):104237.

    • [7] LI G,WANG J,XU W X,et al.Self-regulation phenomenon emerged during prolonged fatigue driving:an EEG connectivity study[J].IEEE transactions on neural systems and rehabilitation engineering,2023,31:4895.

    • [8] 徐琴芳,王延培.脑电测量在儿童发展性障碍诊断中的应用[J].心理科学进展,2017,25(12):2136.

    • [9] LU X J,ZHANG J Q,HUANG S F,et al.Detection and classification of epileptic EEG signals by the methods of nonlinear dynamics[J].Chaos solitons & fractals,2021,151:111032.

    • [10] PARBAT D,CHAKRABORTY M.A novel methodology to study the cognitive load induced EEG complexity changes:chaos,fractal and entropy based approach[J].Biomedical signal processing and control,2021,64:102277.

    • [11] 牛斯然,李建英,王霆.基于非线性参数分析的优秀气步枪运动员不同状态下大脑顶枕区脑电变化特征研究[J].西安体育学院学报,2020,37(2):225.

    • [12] 王霆,李建英,时卫东.中国射箭队备战第17届仁川亚运会不同训练阶段脑电非线性参数分析及脑波诱导干预的研究[J].天津体育学院学报,2015,30(1):47.

    • [13] LIN L D,CHANG D,SONG D H,et al.Lower resting brain entropy is associated with stronger task activation and deactivation[J].NeuroImage,2022,249:118875.

    • [14] PAPPALETTERA C,MIRAGLIA F,COTELLI M,et al.Analysis of complexity in the EEG activity of Parkinson’s disease patients by means of approximate entropy[J].GeroScience,2022,44(3):1599.

    • [15] NEZAFATI M,TEMMAR H,KEILHOLZ S D.Functional MRI signal complexity analysis using sample entropy[J].Frontiers in neuroscience,2020,14:700.

    • [16] LYNN C W,CORNBLATH E J,PAPADOPOULOS L,et al.Broken detailed balance and entropy production in the human brain[J].Proceedings of the national academy of sciences of the United States of America,2021,118(47):e2109889118.

    • [17] 张朋,周前祥,于洪强,等.基于EEG信号特征的脑力疲劳快速检测方法[J].北京航空航天大学学报,2023,49(1):145.

    • [18] 徐选华,肖婷,陈晓红.社会网络环境下基于群智知识融合的大群体应急决策共识模型[J].中国管理科学,2024,32(2):285.

    • [19] HRAMOV A E,FROLOV N S,MAKSIMENKO V A,et al.Functional networks of the brain:from connectivity restoration to dynamic integration[J].Physics-Uspekhi,2021,64(6):584.

    • [20] HE B,YANG L,WILKE C,et al.Electrophysiological imaging of brain activity and connectivity-challenges and opportunities[J].IEEE transactions on bio-medical engineering,2011,58(7):1918.

    • [21] WANG Z M,CHEN Z Y,ZHANG J.EEG emotion recognition based on PLV-rich-club dynamic brain function network[J].Applied intelligence,2023,53(14):17327.

    • [22] MA J Y,WANG Z Y,CHENG T Y,et al.A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug-resistant epilepsy[J].CNS neuroscience & therapeutics,2022,28(11):1838.

    • [23] 李洁.基于脑电图研究经颅交流电刺激影响卒中后认知障碍的注意功能[D].广州:南方医科大学,2021.

    • [24] VINCK M,OOSTENVELD R,van WINGERDEN M,et al.An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction,noise and sample-size bias[J].NeuroImage,2011,55(4):1548.

    • [25] CHANG W W,WANG H,YAN G H,et al.An EEG based familiar and unfamiliar person identification and classification system using feature extraction and directed functional brain network[J].Expert systems with applications,2020,158:113448.

    • [26] 袁月婷,闫光辉,常文文,等.基于脑电信号空域特征的紧急制动行为识别[J].电子科技大学学报,2024,53(1):84.

    • [27] RUBINOV M,SPORNS O.Complex network measures of brain connectivity:uses and interpretations[J].NeuroImage,2010,52(3):1059.

    • [28] 吴天昊,张震,王家曜.一种基于卷积神经网络的疲劳驾驶检测方法[J/OL].控制工程:1-7[2024-09-23].https://doi.org/10.14107/j.cnki.kzgc.20230854.

    • [29] 滕晶,王玉来,姚斌,等.肝气郁结证患者脑电非线性分析的研究[J].山东中医药大学学报,2008,32(5):378.

    • [30] FELL J,RÖSCHKE J,MANN K,et al.Discrimination of sleep stages:a comparison between spectral and nonlinear EEG measures[J].Electroencephalography and clinical neurophysiology,1996,98(5):401.

    • [31] MAI J B,WANG X Z,LI Z B,et al.EEG signal classification of tinnitus based on SVM and sample entropy[J].Computer methods in biomechanics and biomedical engineering,2023,26(5):580.

    • [32] MU Z D,HU J F,MIN J L.Driver fatigue detection system using electroencephalography signals based on combined entropy features[J].Applied sciences,2017,7(2):150.

    • [33] SHALASH W M.Driver fatigue detection with single EEG channel using transfer learning[C]//2019 IEEE International Conference on Imaging Systems and Techniques(IST).Piscataway,NJ:IEEE Press,2019:1.

    • [34] 韩明秀,王盛,王煜文,等.基于EEG的飞行员脑力疲劳评估研究进展[J].载人航天,2021,27(5):639.

    • [35] ZHANG T,CHEN J C,HE E Q,et al.Sample-entropy-based method for real driving fatigue detection with multichannel electroencephalogram[J].Applied sciences,2021,11(21):10279.

    • [36] CHEN L L,ZHAO Y,ZHANG J,et al.Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning[J].Expert systems with applications,2015,42(21):7344.

    • [37] KAR S,BHAGAT M,ROUTRAY A.EEG signal analysis for the assessment and quantification of driver’s fatigue[J].Transportation research part f:traffic psychology and behaviour,2010,13(5):297.

    • [38] ZHANG H,WANG J Y,GENG X Y,et al.Objective assessments of mental fatigue during a continuous long-term stress condition[J].Frontiers in human neuroscience,2021,15:733426.

    • [39] GRIGGS M A,PARR B,VANDEGRIFT N S,et al.The effect of acute exercise on attentional control and theta power in young adults[J].Experimental brain research,2023,241(10):2509.

    • [40] LI G,HUANG S,XU W X,et al.The impact of mental fatigue on brain activity:a comparative study both in resting state and task state using EEG[J].BMC neuroscience,2020,21:20.

    • [41] SHARMA L D,SARASWAT R K,SUNKARIA R K.Cognitive performance detection using entropy-based features and lead-specific approach[J].Signal,image and video processing,2021,15(8):1821.

    • [42] 高思雨,梁轶睿,伦梓文,等.乒乓球运动员动作预测时空整合的大脑网络连接特征[J].首都体育学院学报,2023,35(5):483.

    • [43] GAO L Y,ZHU L,HU L,et al.Mid-task physical exercise keeps Your mind vigilant:evidences from behavioral performance and EEG functional connectivity[J].IEEE transactions on neural systems and rehabilitation engineering,2021,29:31.

    • [44] TRAN Y,CRAIG A,CRAIG R,et al.The influence of mental fatigue on brain activity:evidence from a systematic review with meta-analyses[J].Psychophysiology,2020,57(5):e13554.

    • [45] MONTEIRO T G,SKOURUP C,ZHANG H X.Using EEG for mental fatigue assessment:a comprehensive look into the current state of the art[J].IEEE transactions on human-machine systems,2019,49(6):599.

    • [46] XING X J,ZHONG B T,LUO H B,et al.Effects of physical fatigue on the induction of mental fatigue of construction workers:a pilot study based on a neurophysiological approach[J].Automation in construction,2020,120:103381.

    • [47] SAKKALIS V,DORU GIURCANEANU C,XANTHOPOULOS P,et al.Assessment of linear and nonlinear synchronization measures for analyzing EEG in a mild epileptic paradigm[J].IEEE transactions on information technology in biomedicine,2009,13(4):433.

    • [48] WU Y Z,LI W B,ZHANG J,et al.Driver’s hand-foot coordination and global-regional brain functional connectivity under fatigue:via graph theory and explainable artificial intelligence[J].IEEE transactions on intelligent vehicles,2024,9(2):3493.

    • [49] PORTAS C M,REES G,HOWSEMAN A M,et al.A specific role for the thalamus in mediating the interaction of attention and arousal in humans[J].Journal of neuroscience,1998,18(21):8979.

    • [50] DRUMMOND S P A,BROWN G G.The effects of total sleep deprivation on cerebral responses to cognitive performance[J].Neuropsychopharmacology,2001,25(Sup1):S68.

    • [51] DRUMMOND S P,GILLIN J C,BROWN G G.Increased cerebral response during a divided attention task following sleep deprivation[J].Journal of sleep research,2001,10(2):85.

    • [52] 欧颖晖,吴寒,雷哲,等.99mTc-ECD SPECT脑显像NeuroGamTM诊断早期认知障碍[J].复旦学报(医学版),2022,49(5):753.

    • [53] FONTES E B,OKANO A H,de GUIO F,et al.Brain activity and perceived exertion during cycling exercise:an fMRI study[J].British journal of sports medicine,2015,49(8):556.

    • [54] DIMITRAKOPOULOS G N,KAKKOS I,DAI Z X,et al.Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks[J].IEEE transactions on neural systems and rehabilitation engineering,2018,26(4):740.

    • [55] ZHENG R L,WANG Z M,HE Y,et al.EEG-based brain functional connectivity representation using amplitude locking value for fatigue-driving recognition[J].Cognitive neurodynamics,2022,16(2):325.

    • [56] DO T T N,WANG Y K,LIN C T.Increase in brain effective connectivity in multitasking but not in a high-fatigue state[J].IEEE transactions on cognitive and developmental systems,2021,13(3):566.

  • 参考文献

    • [1] 陈万,李换平,王海宁,等.膝关节伸肌最大等速向心和离心收缩运动前后神经肌肉疲劳的研究[J].天津体育学院学报,2017,32(4):338.

    • [2] 付梦龙.基于表面肌电信号的实时在线肌肉疲劳估计方法研究[D].深圳:中国科学院大学(中国科学院深圳先进技术研究院),2020.

    • [3] 陈小平.第32届夏季奥运会延期对运动训练的影响及其对策[J].中国体育科技,2020,56(7):6.

    • [4] GAO L D,YE J Y,BÁLINT K,et al.Biomechanical effects of exercise fatigue on the lower limbs of men during the forward lunge[J].Frontiers in physiology,2023,14:1182833.

    • [5] ZHANG J Y,CHEN M M,PENG Y,et al.Wearable biosensors for human fatigue diagnosis:a review[J].Bioengineering & translational medicine,2023,8(1):e10318.

    • [6] ZHANG Y H,GUO H Y,ZHOU Y J,et al.Recognising drivers’ mental fatigue based on EEG multi-dimensional feature selection and fusion[J].Biomedical signal processing and control,2023,79(Part 2):104237.

    • [7] LI G,WANG J,XU W X,et al.Self-regulation phenomenon emerged during prolonged fatigue driving:an EEG connectivity study[J].IEEE transactions on neural systems and rehabilitation engineering,2023,31:4895.

    • [8] 徐琴芳,王延培.脑电测量在儿童发展性障碍诊断中的应用[J].心理科学进展,2017,25(12):2136.

    • [9] LU X J,ZHANG J Q,HUANG S F,et al.Detection and classification of epileptic EEG signals by the methods of nonlinear dynamics[J].Chaos solitons & fractals,2021,151:111032.

    • [10] PARBAT D,CHAKRABORTY M.A novel methodology to study the cognitive load induced EEG complexity changes:chaos,fractal and entropy based approach[J].Biomedical signal processing and control,2021,64:102277.

    • [11] 牛斯然,李建英,王霆.基于非线性参数分析的优秀气步枪运动员不同状态下大脑顶枕区脑电变化特征研究[J].西安体育学院学报,2020,37(2):225.

    • [12] 王霆,李建英,时卫东.中国射箭队备战第17届仁川亚运会不同训练阶段脑电非线性参数分析及脑波诱导干预的研究[J].天津体育学院学报,2015,30(1):47.

    • [13] LIN L D,CHANG D,SONG D H,et al.Lower resting brain entropy is associated with stronger task activation and deactivation[J].NeuroImage,2022,249:118875.

    • [14] PAPPALETTERA C,MIRAGLIA F,COTELLI M,et al.Analysis of complexity in the EEG activity of Parkinson’s disease patients by means of approximate entropy[J].GeroScience,2022,44(3):1599.

    • [15] NEZAFATI M,TEMMAR H,KEILHOLZ S D.Functional MRI signal complexity analysis using sample entropy[J].Frontiers in neuroscience,2020,14:700.

    • [16] LYNN C W,CORNBLATH E J,PAPADOPOULOS L,et al.Broken detailed balance and entropy production in the human brain[J].Proceedings of the national academy of sciences of the United States of America,2021,118(47):e2109889118.

    • [17] 张朋,周前祥,于洪强,等.基于EEG信号特征的脑力疲劳快速检测方法[J].北京航空航天大学学报,2023,49(1):145.

    • [18] 徐选华,肖婷,陈晓红.社会网络环境下基于群智知识融合的大群体应急决策共识模型[J].中国管理科学,2024,32(2):285.

    • [19] HRAMOV A E,FROLOV N S,MAKSIMENKO V A,et al.Functional networks of the brain:from connectivity restoration to dynamic integration[J].Physics-Uspekhi,2021,64(6):584.

    • [20] HE B,YANG L,WILKE C,et al.Electrophysiological imaging of brain activity and connectivity-challenges and opportunities[J].IEEE transactions on bio-medical engineering,2011,58(7):1918.

    • [21] WANG Z M,CHEN Z Y,ZHANG J.EEG emotion recognition based on PLV-rich-club dynamic brain function network[J].Applied intelligence,2023,53(14):17327.

    • [22] MA J Y,WANG Z Y,CHENG T Y,et al.A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug-resistant epilepsy[J].CNS neuroscience & therapeutics,2022,28(11):1838.

    • [23] 李洁.基于脑电图研究经颅交流电刺激影响卒中后认知障碍的注意功能[D].广州:南方医科大学,2021.

    • [24] VINCK M,OOSTENVELD R,van WINGERDEN M,et al.An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction,noise and sample-size bias[J].NeuroImage,2011,55(4):1548.

    • [25] CHANG W W,WANG H,YAN G H,et al.An EEG based familiar and unfamiliar person identification and classification system using feature extraction and directed functional brain network[J].Expert systems with applications,2020,158:113448.

    • [26] 袁月婷,闫光辉,常文文,等.基于脑电信号空域特征的紧急制动行为识别[J].电子科技大学学报,2024,53(1):84.

    • [27] RUBINOV M,SPORNS O.Complex network measures of brain connectivity:uses and interpretations[J].NeuroImage,2010,52(3):1059.

    • [28] 吴天昊,张震,王家曜.一种基于卷积神经网络的疲劳驾驶检测方法[J/OL].控制工程:1-7[2024-09-23].https://doi.org/10.14107/j.cnki.kzgc.20230854.

    • [29] 滕晶,王玉来,姚斌,等.肝气郁结证患者脑电非线性分析的研究[J].山东中医药大学学报,2008,32(5):378.

    • [30] FELL J,RÖSCHKE J,MANN K,et al.Discrimination of sleep stages:a comparison between spectral and nonlinear EEG measures[J].Electroencephalography and clinical neurophysiology,1996,98(5):401.

    • [31] MAI J B,WANG X Z,LI Z B,et al.EEG signal classification of tinnitus based on SVM and sample entropy[J].Computer methods in biomechanics and biomedical engineering,2023,26(5):580.

    • [32] MU Z D,HU J F,MIN J L.Driver fatigue detection system using electroencephalography signals based on combined entropy features[J].Applied sciences,2017,7(2):150.

    • [33] SHALASH W M.Driver fatigue detection with single EEG channel using transfer learning[C]//2019 IEEE International Conference on Imaging Systems and Techniques(IST).Piscataway,NJ:IEEE Press,2019:1.

    • [34] 韩明秀,王盛,王煜文,等.基于EEG的飞行员脑力疲劳评估研究进展[J].载人航天,2021,27(5):639.

    • [35] ZHANG T,CHEN J C,HE E Q,et al.Sample-entropy-based method for real driving fatigue detection with multichannel electroencephalogram[J].Applied sciences,2021,11(21):10279.

    • [36] CHEN L L,ZHAO Y,ZHANG J,et al.Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning[J].Expert systems with applications,2015,42(21):7344.

    • [37] KAR S,BHAGAT M,ROUTRAY A.EEG signal analysis for the assessment and quantification of driver’s fatigue[J].Transportation research part f:traffic psychology and behaviour,2010,13(5):297.

    • [38] ZHANG H,WANG J Y,GENG X Y,et al.Objective assessments of mental fatigue during a continuous long-term stress condition[J].Frontiers in human neuroscience,2021,15:733426.

    • [39] GRIGGS M A,PARR B,VANDEGRIFT N S,et al.The effect of acute exercise on attentional control and theta power in young adults[J].Experimental brain research,2023,241(10):2509.

    • [40] LI G,HUANG S,XU W X,et al.The impact of mental fatigue on brain activity:a comparative study both in resting state and task state using EEG[J].BMC neuroscience,2020,21:20.

    • [41] SHARMA L D,SARASWAT R K,SUNKARIA R K.Cognitive performance detection using entropy-based features and lead-specific approach[J].Signal,image and video processing,2021,15(8):1821.

    • [42] 高思雨,梁轶睿,伦梓文,等.乒乓球运动员动作预测时空整合的大脑网络连接特征[J].首都体育学院学报,2023,35(5):483.

    • [43] GAO L Y,ZHU L,HU L,et al.Mid-task physical exercise keeps Your mind vigilant:evidences from behavioral performance and EEG functional connectivity[J].IEEE transactions on neural systems and rehabilitation engineering,2021,29:31.

    • [44] TRAN Y,CRAIG A,CRAIG R,et al.The influence of mental fatigue on brain activity:evidence from a systematic review with meta-analyses[J].Psychophysiology,2020,57(5):e13554.

    • [45] MONTEIRO T G,SKOURUP C,ZHANG H X.Using EEG for mental fatigue assessment:a comprehensive look into the current state of the art[J].IEEE transactions on human-machine systems,2019,49(6):599.

    • [46] XING X J,ZHONG B T,LUO H B,et al.Effects of physical fatigue on the induction of mental fatigue of construction workers:a pilot study based on a neurophysiological approach[J].Automation in construction,2020,120:103381.

    • [47] SAKKALIS V,DORU GIURCANEANU C,XANTHOPOULOS P,et al.Assessment of linear and nonlinear synchronization measures for analyzing EEG in a mild epileptic paradigm[J].IEEE transactions on information technology in biomedicine,2009,13(4):433.

    • [48] WU Y Z,LI W B,ZHANG J,et al.Driver’s hand-foot coordination and global-regional brain functional connectivity under fatigue:via graph theory and explainable artificial intelligence[J].IEEE transactions on intelligent vehicles,2024,9(2):3493.

    • [49] PORTAS C M,REES G,HOWSEMAN A M,et al.A specific role for the thalamus in mediating the interaction of attention and arousal in humans[J].Journal of neuroscience,1998,18(21):8979.

    • [50] DRUMMOND S P A,BROWN G G.The effects of total sleep deprivation on cerebral responses to cognitive performance[J].Neuropsychopharmacology,2001,25(Sup1):S68.

    • [51] DRUMMOND S P,GILLIN J C,BROWN G G.Increased cerebral response during a divided attention task following sleep deprivation[J].Journal of sleep research,2001,10(2):85.

    • [52] 欧颖晖,吴寒,雷哲,等.99mTc-ECD SPECT脑显像NeuroGamTM诊断早期认知障碍[J].复旦学报(医学版),2022,49(5):753.

    • [53] FONTES E B,OKANO A H,de GUIO F,et al.Brain activity and perceived exertion during cycling exercise:an fMRI study[J].British journal of sports medicine,2015,49(8):556.

    • [54] DIMITRAKOPOULOS G N,KAKKOS I,DAI Z X,et al.Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks[J].IEEE transactions on neural systems and rehabilitation engineering,2018,26(4):740.

    • [55] ZHENG R L,WANG Z M,HE Y,et al.EEG-based brain functional connectivity representation using amplitude locking value for fatigue-driving recognition[J].Cognitive neurodynamics,2022,16(2):325.

    • [56] DO T T N,WANG Y K,LIN C T.Increase in brain effective connectivity in multitasking but not in a high-fatigue state[J].IEEE transactions on cognitive and developmental systems,2021,13(3):566.

  • 用微信扫一扫

    用微信扫一扫